Complete
Reference

162 C++: The Compiete Reference

The C language gives you five ways to create a custom data type:

1. The structure, which is a grouping of variables under one name and is called an
aggregate data type. (The terms compound or conglomerate are also commonly used.)

2. The bit-field, which is a variation on the structure and allows easy access to
individual bits.

3. The union, which enables the same piece of memory to be defined as two or
more different types of variables.

4. The enumeration, which is a list of named integer constants.

5. The typedef keyword, which defines a new name for an existing type.

C++ supports all of the above and adds classes, which are described in Part Two.
The other methods of creating custom data types are described here.

Note l In C++, structures and unions have both object-oriented and non-object-oriented
' attributes. This chapter discusses only their C-like, non-object-oriented features.

Their object-oriented qualities are described later in this book.

___| structures

A structure is a collection of variables referenced under one name, providing a
convenient means of keeping related information together. A structure declaration
forms a template that may be used to create structure objects (that is, instances of

a structure). The variables that make up the structure are called members. (Structure
members are also commonly referred to as elements or fields.)

Generally, all of the members of a structure are logically related. For example, the
name and address information in a mailing list would normally be represented in a
structure. The following code fragment shows how to declare a structure that defines
the name and address fields. The keyword struct tells the compiler that a structure is
being declared.

struct addr
{
char name[30];
char street[40];
char city[20];
char state[3];
unsigned long int zip;

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

Notice that the declaration is terminated by a semicolon. This is because a structure
declaration is a statement. The type name of the structure is addr. As such, addr
identifies this particular data structure and is its type specifier.

At this point, no variable has actually been created. Only the form of the data has been
defined. When you define a structure, you are defining a compound variable type, not
a variable. Not until you declare a variable of that type does one actually exist. In C, to
declare a variable (i.e., a physical object) of type addr, write

§ struct addr addr_info;

This declares a variable of type addr called addr_info. In C++, you may use this
shorter form.

addr addr_info;

As you can see, the keyword struct is not needed. In C++, once a structure has been
declared, you may declare variables of its type using only its type name, without preceding
it with the keyword struct. The reason for this difference is that in C, a structure’s name
does not define a complete type name. In fact, Standard C refers to a structure's name
as a tag. In C, you must precede the tag with the keyword struct when declaring variables.
However, in C++, a structure's name is a complete type name and may be used by itself
to define variables. Keep in mind, however, that it is still perfectly legal to use the C-style
declaration in a C++ program. Since the programs in Part One of this book are valid for
both C and C++, they will use the C declaration method. Just remember that C++ allows
the shorter form.

When a structure variable (such as addr_info) is declared, the compiler automatically
allocates sufficient memory to accommodate all of its members. Figure 7-1 shows how
addr_info appears in memory assuming 1-byte characters and 4-byte long integers.

You may also declare one or more structure variables when you declare a structure.
For example,

struct addr {
char name([30];
char street{40];
char city[20];
char state(3];
unsigned long int zip;
} addr_info, bkinfo, cinfo;

defines a structure type called addr and declares variables addr_info, binfo, and cinfo
of that type. It is important to understand that each structure object contains its own

163

C++: The

Complete Reference

Name 30 bytes
Street 40 bytes
City 20 bytes

State 3 bytes

ZIP 4 Dbytes

Figure 7-1. The addr_info structure in memory

copies of the structure’s members. For example, the zip field of binfo is separate from
the zip field of cinfo. Thus, changes to zip in binfo do not affect the zip in cinfo.

If you only need one structure variable, the structure type name is not needed.
That means that

struct
char
char
char
char

{

name[30];
street [40];
city[20];
state(3];

unsigned long int zip;
} addr_

info;

declares one variable named addr_info as defined by the structure preceding it.
The general form of a structure declaration is

struct struct-type-name |
type member-name;
type member-name;
type member-name;

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 165

} structure-variables;

where either struct-type-name or structure-variables may be omitted, but not both.

Accessing Structure Members
Individual members of a structure are accessed through the use of the . operator
(usually called the dot operator). For example, the following code assigns the ZIP
code 12345 to the zip field of the structure variable addr_info declared earlier:

addr_info.zip = 12345;

The structure variable name followed by a period and the member name references
that individual member. The general form for accessing a member of a structure is

structure—name.mcmber—name

Therefore, to print the ZIP code on the screen, write

printf ("%lu", addr_info.zip);

This prints the ZIP code contained in the zip member of the structure variable addr_info.
In the same fashion, the character array addr_info.name can be used to call gets(),

as shown here:

gets (addr_info.name) ;

This passes a character pointer to the start of name.
Since name is a character array, you can access the individual characters of

addr_info.name by indexing name. For example, you can print the contents
of addr_info.name one character at a time by using the following code:

register int t;

for (t=0; addr_info.name[t]; ++t)
putchar (addr_info.namelt]);

Structure Assignments

The information contained in one structure may be assigned to another structure of the
same type using a single assignment statement. That is, you do not need to assign the

166

C++: The Complete Refercnce

value of each member separately. The following program illustrates structure
assignments:

#include <stdio.h>

int main(void)
{
struct {

int a;

int b;
}ox,oy;

Y = X; /* assign one structure to ancther *,
printf ("%d", vy.a):

return 0;

After the assignment, y.a will contain the value 10.

Arrays of Structures

Perhaps the most common usage of structures is in arrays of structures. To declare
an array of structures, you must first define a structure and then declare an array
variable of that type. For example, to declare a 100-element array of structures of
type addr, defined earlier, write

struct addr addr_info[100];

This creates 100 sets of variables that are organized as defined in the structure addr.
To access a specific structure, index the structure name. For example, to print the
ZIP code of structure 3, write

printf("%lu", addr_info[2].zip);

Like all array variables, arrays of structures begin indexing at 0.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

] Passing Structures to Functions

This section discusses passing structures and their members to functions.

Passing Structure Members to Functions

When you pass a member of a structure to a function, you are actually passing the
value of that member to the function. Therefore, you are passing a simple variable
(unless, of course, that element is compound, such as an array). For example,

consider this structure:

struct fred
{
char x;
int vy;
float z;
char s[10];
} mike;

Here are examples of each member being passed tc a function:

func{(mike.x) ; /*
func2 (mike.y); /*
func3 (mike.z) ; ad
funcd (mike.s); /*
func (mike.s[2]); /*

Ee

passes
passes
passes
passes
passes

character value of x */
integer value of y */
float value of z */
address of string s */
character value of s[2] */

If you wish to pass the address of an individual structure member, put the & operator
before the structure name. For example, to pass the address of the members of the

structure mike, write

func (&mike.x); /*
func?2 (&mike.vy); /*
func3l (&mike.z) ; ad
func4 (mike.s); /*
func (&mike.s[2]); /*

passes
passes
passes
passes
passes

address of character x */
address of integer y */
address of float z */
address of string s */
address of character s[2] */

Note that the & operator precedes the structure name, not the individual member
name. Note also that s already signifies an address, so no & is required.

167

168 C++: The Complete Reference

Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed
using the standard call-by-value method. Of course, this means that any changes
made to the contents of the structure inside the function to which it is passed do not
affect the structure used as an argument.

When using a structure as a parameter, remember that the type of the argument
must match the type of the parameter. For example, in the following program both the
argument arg and the parameter parm are declared as the same type of structure.

#include <stdio.h>

/* Define a structure type. "*/
struct struct_type {

int a, b;

char ch;
Yo

void fl(struct struct_type parm) ;
int main(void)
{

struct struct_type arg;

arg.a = 1000;

fl(arg);

return 0;
void fl(struct struct_type parm)
{

printf ("$d", parm.a);
}

As this program illustrates, if you will be declaring parameters that are structures,
you must make the declaration of the structure type global so that all parts of your
program can use it. For example, had struct_type been declared inside main() (for
example), then it would not have been visible to £1().

As just stated, when passing structures, the type of the argument must match
the type of the parameter. It is not sufficient for them to simply be physically similar;
their type names must match. For example, the following version of the preceding

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 169

program is incorrect and will not compile because the type name of the argument
used to call f1() differs from the type name of its parameter.

/* This program is incorrect and will not compile. */
#include <stdio.h>

/* Define a structure type. */
struct struct_type {

int a, b;

char ch;
o

/* Define a structure similar to struct_type,
but with a different name. */

struct struct_type2 {
int a, b;
char ch;

o

void f1l(struct struct_type2 parm);
int main(void)
{
struct struct_type arg;
arg.a = 1000;
fl(arg); /* type mismatch */
return 0;
void fl{struct struct_type2 parm)

{

printf ("%d", parm.a);

___| structure Pointers

C/C++ allows pointers to structures just as it allows pointers to any other type
of variable. However, there are some special aspects to structure pointers that
you should know.

170 C++: The Complete Reference

Declaring a Structure Pointer

Like other pointers, structure pointers are declared by placing * in front of a structure
variable's name. For example, assuming the previously defined structure addr, the
following declares addr_pointer as a pointer to data of that type:

struct addr *addr_pointer;

Remember, in C++ it is not necessary to precede this declaration with the keyword
struct.

Using Structure Pointers

There are two primary uses for structure pointers: to pass a structure to a function using
call by reference, and to create linked lists and other dynamic data structures that rely
on dynamic allocation. This chapter covers the first use.

There is one major drawback to passing all but the simplest structures to functions:
the overhead needed to push the structure onto the stack when the function call is
executed. (Recall that arguments are passed to functions on the stack.) For simple
structures with few members, this overhead is not too great. If the structure contains
many members, however, or if some of its members are arrays, run-time performance
may degrade to unacceptable levels. The solution to this problem is to pass only a
pointer to the structure.

When a pointer to a structure is passed to a function, only the address of the
structure is pushed on the stack. This makes for very fast function calls. A second
advantage, in some cases, is when a function needs to reference the actual structure
used as the argument, instead of a copy. By passing a pointer, the function can
modify the contents of the structure used in the call.

To find the address of a structure, place the & operator before the structure’s name.
For example, given the following fragment:

s

struct bal {
float balance;
char name[801;
} person;

struct bal *p; /* declare a structure pointer */

p = &person;

places the address of the structure person into the pointer p.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

To access the members of a structure using a pointer to that structure, you must
use the —> operator. For example, this references the balance field:

p->balance

The —> is usually called the arrow operator, and consists of the minus sign followed
by a greater-than sign. The arrow is used in place of the dot operator when you are
accessing a structure member through a pointer to the structure.

To see how a structure pointer can be used, examine this simple program, which
prints the hours, minutes, and seconds on your screen using a software timer.

/* Display a software timer. */

#inciude <stdio.h>

#define DELAY 128000

struct my_time {
int hours;
int minutes;
int seconds;

P

void display(struct my_time *t);
void update (struct my_time *t);
void delay(void);

int main(void)
{
struct my_time systime;

systime.hours = 0;
systime.minutes = 0;
systime.seconds = 0;
for(;;) {

update (&systime) ;
display (&systime);

return 0;

171

172 C++: The Complete Reference

void update(struct my_time *t)
{
t->seconds++;
if (t->seconds==60) {
t->seconds = 0;
t->minutes++;

if (t->minutes==60) {
t->minutes = 0;
t->hours++;

if (t->hours==24) t->hours = 0;
delay();

void display(struct my_time *t)
{
printf ("%$02d:", t->hours);
printf ("%02d:", t->minutes);
printf ("%$02d\n", t->seconds);

void delay({void)
{
long int t;

/* change this as needed */
for(t=1; t<DELAY; ++t) ;

The timing of this program is adjusted by changing the definition of DELAY.

As you can see, a global structure called my_time is defined but no variable is
declared. Inside main(), the structure systime is declared and initialized to 00:00:00.
This means that systime is known directly only to the main() function.

The functions update() (which changes the time) and display() (which prints
the time) are passed the address of systime. In both functions, their arguments are
declared as a pointer to a my_time structure.

Inside update() and display(), each member of systime is accessed via a pointer.
Because update() receives a pointer to the systime structure, it can update its value.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

For example, to set the hours back to 0 when 24:00:00 is reached, update() contains
this line of code:

if(t->hours==24) t->hours = 0;

This tells the compiler to take the address in t (which points to systime in main())
and use it to reset hours to zero.

Remember, use the dot operator to access structure elements when operating on
the structure itself. When you have a pointer to a structure, use the arrow operator.

__| Arrays and Structures Within Structureé |

A member of a structure may be either a simple or aggregate type. A simple member
is one that is of any of the built-in data types, such as integer or character. You have
already seen one type of aggregate element: the character arrays used in addr. Other
aggregate data types include one-dimensional and multidimensional arrays of the
other data types, and structures.

A member of a structure that is an array is treated as you might expect from the
earlier examples. For example, consider this structure:

struct x {
int a[10][10]; /* 10 x 10 array of ints */
float b;

Yoy

To reference integer 3,7 in a of structure y, write

I y.al3]17]

When a structure is a member of another structure, it is called a nested structure.
For example, the structure address is nested inside emp in this example:

struct emp {
struct addr address; /* nested structure */
float wage;

} worker;

Here, structure emp has been defined as having two members. The first is a structure
of type addr, which contains an employee’s address. The other is wage, which holds

173

174 C++: The Complete Reference

the employee’s wage. The following code fragment assigns 93456 to the zip element
of address.

worker.address.zip = 93456;

As you can see, the members of each structure are referenced from outermost to
innermost. C guarantees that structures can be nested to at least 15 levels. Standard
C++ suggests that at least 256 levels of nesting be allowed.

___| Bit-Fields

Unlike some other computer languages, C/C++ has a built-in feature called a bit-field
that allows you to access a single bit. Bit-fields can be useful for a number of reasons,
such as:

W If storage is limited, you can store several Boolean (true/false) variables in
one byte.

B Certain devices transmit status information encoded into one or more bits
within a byte.

B Certain encryption routines need to access the bits within a byte.

Although these tasks can be performed using the bitwise operators, a bit-field can
add more clarity (and possibly efficiency) to your code.

To access individual bits, C/C++ uses a method based on the structure. In fact,
a bit-field is really just a special type of structure member that defines how long,
in bits, the field is to be. The general form of a bit-field definition is

struct struct-type-name |
type namel : length;
type name?2 : length;

type namieN : length;
} variable_list;

Here, type is the type of the bit-field and length is the number of bits in the field. A bit-field
must be declared as an integral or enumeration type. Bit-fields of length 1 should be
declared as unsigned, because a single bit cannot have a sign.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 175

Bit-fields are frequently used when analyzing input from a hardware device.
For example, the status port of a serial communications adapter might return a
status byte organized like this:

Bit Meaning When Set

0 Change in clear-to-send line
1 Change in data-set-ready

2 Trailing edge detected

3 Change in receive line

4 Clear-to-send

5 Data-set-ready

6 Telephone ringing

7 Received signal

You can represent the information in a status byte using the following bit-field:

struct status_type {
unsigned delta _cts:
unsigned delta_dsr:
unsigned tr_edge:
unsigned delta_rec:

1
1
1
1
unsigned cts: 1;
unsigned dsr: 1
unsigned ring: 1
unsigned rec_line: 1

} status;

You might use a routine similar to that shown here to enable a program to determine
when it can send or receive data.

status = get_port_status{);

if(status.cts) printf("clear cc send");

if(status.dsr) printf("data ready");

To assign a value to a bit-field, simply use the form you would use for any other type
of structure element. For example, this code fragment clears the ring field:

status.ring = 0;

176

C++: The Complete Reference

As you can see from this example, each bit-field is accessed with the dot operator. However,
if the structure is referenced through a pointer, you must use the —> operator.

You do not have to name each bit-field. This makes it easy to reach the bit you want,
bypassing unused ones. For example, if you only care about the cts and dsr bits, you
could declare the status_type structure like this:

struct status_type (
unsigned : 4;
unsigned cts: 1;
unsigned dsr: 1;

} status;

Also, notice that the bits after dsr do not need to be specified if they are not used.
Itis valid to mix normal structure members with bit-fields. For example,

struct emp {
struct addr address;

float pay;
unsigned lay_off: 1; /* lay off or active */
unsigned hourly: 1; /* hourly pay or wage */

unsigned deductions: 3; /* IRS deductions */

defines an employee record that uses only 1 byte to hold three pieces of information:
the employee's status, whether the employee is salaried, and the number of deductions.
Without the bit-field, this information would have taken 3 bytes.

Bit-fields have certain restrictions. You cannot take the address of a bit-field. Bit-
fields cannot be arrayed. They cannot be declared as static. You cannot know, from
machine to machine, whether the fields will run from right to left or from left to right;
this implies that any code using bit-fields may have some machine dependencies.
Other restrictions may be imposed by various specific implementations.

Unions

A union is a memory location that is shared by two or more different types of variables.
A union provides a way of interpreting the same bit pattern in two or more different
ways. Declaring a union is similar to declaring a structure. Its general form is

union union-type-name |
type member-name;

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 177

type member-name;
type member-name;

} union-variables;

For example:

union u_type {
int 1i;
char ch;

}i

This declaration does not create any variables. You may declare a variable either
by placing its name at the end of the declaration or by using a separate declaration
statement. In C, to declare a union variable called envt of type u_type using the
definition just given, write

l union u_type cnvt;

When declaring union variables in C++, you need use only the type name—
you don't need to precede it with the keyword union. For example, this is how
cnvt is declared in C++:

g u_type cnvt;

In C++, preceding this declaration with the keyword union is allowed, but redundant.
In C++, the name of a union defines a complete type name. In C, a union name is its
tag and it must be preceded by the keyword union. (This is similar to the situation with
structures described earlier.) However, since the programs in this chapter are valid for
both C and C++, the C-style declaration form will be used.

In cnvt, both integer i and character ch share the same memory location. Of
course, i occupies 2 bytes (assuming 2-byte integers) and ch uses only 1. Figure 7-2
shows how i and ch share the same address. At any point in your program, you can
refer to the data stored in a cnvt as either an integer or a character.

When a union variable is declared, the compiler automatically allocates enough
storage to hold the largest member of the union. For example (assuming 2-byte integers),
cnvt is 2 bytes long so that it can hold i, even though ch requires only 1 byte.

178

C++: The Complete Reference

Byte 0 Byte 1

Figure 7-2. How i and ch utilize the union cnvt (assume 2-byte integers)

To access a member of a union, use the same syntax that you would use for
structures: the dot and arrow operators. If you are operating on the union directly,
use the dot operator. If the union is accessed through a pointer, use the arrow
operator. For example, to assign the integer 10 to element i of cnvt, write

cnvt.i = 10;

In the next example, a pointer to cnvt is passed to a function:

void funcl(union u_type *un)
{
un->i = 10; /* assign 10 to cnvt through
a pointer */

Unions are used frequently when specialized type conversions are needed because you
can refer to the data held in the union in fundamentally different ways. For example,
you may use a union to manipulate the bytes that comprise a double in order to alter its
precision or to perform some unusual type of rounding.

To get an idea of the usefulness of a union when nonstandard type conversions
are needed, consider the problem of writing a short integer to a disk file. The C/C++
standard library defines no function specifically designed to write a short integer to
a file. While you can write any type of data to a file using fwrite(), using fwrite()
incurs excessive overhead for such a simple operation. However, using a union you
can easily create a function called putw(), which writes the binary representation of
a short integer to a file one byte at a time. (This example assumes that short integers
are 2 bytes long.) To see how, first create a union consisting of one short integer and
a 2-byte character array:

union pw {
short int i;

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 179

Now, you can use pw to create the version of putw() shown in the following program.

#include <stdio.h>

union pw {
short int i;
char chi{2};
I

int putw(short int num, FILE *fp);

int main(void)

{
FILE *fp;
fp = fopen("test.tmp", "wb+");
putw (1000, fp); 7* write the value 1000 as an integer */

fclose(fp);

return 0;

e

int putw(short int num, FILE *fp)
union pw word;
word.1l = num;

putc{word.chl[0], fp); /* write first half */

return putc(word.ch[l], fp); /* write second half */

Although putw() is called with a short integer, it can still use the standard function
putc() to write each byte in the integer to a disk file one byte at a time.

Note C++ supports a special type of union called an anonymous union which is discussed in
- ivote N o S :
—_—— Part Two of this book.

180 C++: The Complete Reference

;_1 Enumerations

An enumeration is a set of named integer constants that specify all the legal values
a variable of that type may have. Enumerations are common in everyday life. For
example, an enumeration of the coins used in the United States is

penny, nickel, dime, quarter, half-dollar, dollar

Enumerations are defined much like structures; the keyword enum signals the start
of an enumeration type. The general form for enumerations is

enum enum-type-name | enumeration list | variable_list;

Here, both the type name and the variable list are optional. (But at least one must
be present.) The following code fragment defines an enumeration called coin:

enum coin { penny, nickel, dime, cguarter,
half_dollar, dollar};

The enumeration type name can be used to declare variables of its type. In C, the
following declares money to be a variable of type coin.

l enum coin money;

In C++, the variable money may be declared using this shorter form:

I coin money;

In C++, an enumeration name specifies a complete type. In C, an enumeration name is
its tag and it requires the keyword enum to complete it. (This is similar to the situation
as it applies to structures and unions, described earlier.)

Given these declarations, the following types of statements are perfectly valid:

money = dime;
if (money==quarter) printf("Money is a quarter.\n");

The key point to understand about an enumeration is that each of the symbols
stands for an integer value. As such, they may be used anywhere that an integer may
be used. Each symbol is given a value one greater than the symbol that precedes it.
The value of the first enumeration symbol is 0. Therefore,

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

l printf("%d %d", penny, dime);

displays 0 2 on the screen.
You can specify the value of one or more of the symbols by using an initializer.
Do this by following the symbol with an equal sign and an integer value. Symbols
that appear after initializers are assigned values greater than the previous initialization
value. For example, the following code assigns the value of 100 to quarter:

enum coin { penny, nickel, dime, guarter=100,
half dollar, dollar};

Now, the values of these symbols are

penny 0
nickel 1
dime 2
quarter 100
half_dollar 101
dollar 102

One common but erroneous assumption about enumerations is that the symbols
can be input and output directly. This is not the case. For example, the following code
fragment will not perform as desired:

/* this will not work */
money = dollar;
printf("%s", money):;

Remember, dollar is simply a name for an integer; it is not a string. For the same
reason, you cannot use this code to achieve the desired results:

/* this code 1s wrong */
strcpy (money, "dime");

That is, a string that contains the name of a symbol is not automatically converted to
that symbol.

182 C++: The Complete Reference

Actually, creating code to input and output enumeration symbols is quite tedious
(unless you are willing to settle for their integer values). For example, you need the
following code to display, in words, the kind of coins that money contains:

switch(money) {
case penny: printf ("penny");

break;

case nickel: printf("nickel");
break;

case dime: printf("dime");
break;

case quarter: printf("quarter");
break;

case half dollar: printf("half_cdollar");
break;

case dollar: printf("dollar");

Sometimes you can declare an array of strings and use the enumeration value as an
index to translate that value into its corresponding string. For example, this code also
outputs the proper string:

char name[] [12]={
"penny",
"nickel",
"dime",
"quarter",
"half_dollar",
"dollar"
}i
printf ("%s", name[money]);

Of course, this only works if no symbol is initialized, because the string array must
be indexed starting at 0 in strictly ascending order using increments of 1.

Since enumeration values must be converted manually to their human-readable
string values for I/O operations, they are most useful in routines that do not make
such conversions. An enumeration is often used to define a compiler's symbol table,
for example. Enumerations are also used to help prove the validity of a program by
providing a compile-time redundancy check confirming that a variable is assigned
only valid values.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

___| Using sizeof to Ensure Portability

You have seen that structures and unions can be used to create variables of different
sizes, and that the actual size of these variables may change from machine to machine.
The sizeof operator computes the size of any variable or type and can help eliminate
machine-dependent code from your programs. This operator is especially useful where
structures or unions are concerned.

For the following discussion, assume an implementation, common to many C/C++
compilers, that has the sizes for data tvpes shown here:

Type Size in Bytes
char 1
int 4
double 8

Therefore, the following code will print the numbers 1, 4, and 8 on the screen:

char ch;
int i;
double f;

printf ("%d", sizeof(ch));
printf("%sd", sizeof(i));
printf("%$d", sizeof(f));

The size of a structure is equal to or greater thain the sum of the sizes of its members.
For example,

struct s {
char ch;
int 1;
double f;

} s_var;

Here, sizeof(s_var) is at least 13 (8 + 4 + 1). However, the size of s_var might be
greater because the compiler is allowed to pad a structure in order to achieve word
or paragraph alignment. (A paragraph is 16 bytes.) Since the size of a structure may
be greater than the sum of the sizes of its members, you should always use sizeof
when vou need to know the size of a structure.

183

184 C++: The Complete Reference

Since sizeof is a compile-time operator, all the information necessary to compute
the size of any variable is known at compile time. This is especially meaningful for
unions, because the size of a union is always equal to the size of its largest member.
For example, consider

union u {
char ch;
int i;
double £f;

} u_var;

Here, the sizeof(u_var) is 8. At run time, it does not matter what u_var is actually
holding. All that matters is the size of its largest member, because any union must
be as large as its largest element.

__ | typedef

You can define new data type names by using the keyword typedef. You are not
actually creating a new data type, but rather defining a new name for an existing
type. This process can help make machine-dependent programs more portable. If
you define your own type name for each machine-dependent data type used by your
program, then only the typedef statements have to be changed when compiling for a
new environment. typedef also can aid in self-documenting your code by allowing
descriptive names for the standard data types. The general form of the typedef
statement is

typedef type newname;

where type is any valid data type and newname is the new name for this type. The
new name you define is in addition to, not a replacement for, the existing type name.
For example, you could create a new name for float by using

E typedef float balance;

This statement tells the compiler to recognize balance as another name for float.
Next, you could create a float variable using balance:

I balance over_due;

Here, over_due is a floating-point variable of type balance, which is another word
for float.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

Now that balance has been defined, it can be used in another typedef. For example,

l typedef balance overdraft;

tells the compiler to recognize overdraft as another name for balance, which is another
name for float.

Using typedef can make your code easier to read and easier to port to a new
machine, but you are not creating a new physical type.

185

